Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

نویسندگان

  • Yannan Zhang
  • Ruzhu Wang
  • Yanjie Zhao
چکیده

To store low-temperature heat below 100 ◦C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM) in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM) and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES) system, thermochemical characterizations were implemented through simulative sorption experiments at 30 ◦C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Carbon Nanoadditives on Lithium Hydroxide Monohydrate-Based Composite Materials for Low Temperature Chemical Heat Storage

Carbon nanospheres (CNSs) and multi-walled carbon nanotubes (MWCNTs) as nanoadditives were used to modify lithium hydroxide monohydrate for low temperature chemical heat storage application. The lithium hydroxide monohydrate particles were well dispersed on the nanoscale level, and the diameter of nanoparticles was about 20–30 nm in the case of the carbon nanospheres and 50–100 nm the case of t...

متن کامل

Effects of Fe2O3 addition and mechanical activation on thermochemical heat storage properties of the Co3O4/CoO system

Effects of Fe2O3 addition (2-20 wt%) with 1 h mechanical activation on redox reactions of Co3O4 were studied by TG/DSC, SEM, and XRD analyses. The results showed that a Fe2O3 addition from 2 to 15 wt% increases the oxygen release from 1.4 to 3.4 wt% and decreases the reduction onset temperature from 1030 to 960 °C, while it increases the oxygen uptake value and re-oxidation onset temperature re...

متن کامل

Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture

This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH) and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 was used for the synthesis of Li4SiO4 and the leaching waste water was used for the synthesis of M...

متن کامل

Isothermal Redox Kinetics of Co3O4-Fe2O3 Nano-Composite as a Thermochemical Heat Storage Material

Isothermal redox kinetics of as-received Co3O4 (AC), 1 h ball milled Co3O4 (BC), and 1 h ball milled Co3O4-15wt.% Fe2O3 (BCF) was investigated at various temperatures (1130, 1100, 1070, and 1040 °C for reduction and 830, 860, and 890°C for re-oxidation) by thermogravimetric method. It was found that mechanic...

متن کامل

Thermochemical Heat Storage Properties of Co3O4-X wt % Al2O3 and Co3O4-X wt % Y2O3 Composites (X=1, 2, 5, 8, 10)

The effect of Al2O3 (1-10 wt %) and Y2O3 (1-10 wt %) additions on thermochemical heat storage properties of Co3O4/CoO system was investigated by thermogravimetry, XRD, and SEM analyses. Results showed that the addition of Al2O3 to Co3O4 at constant 8 h mechanical activation improved the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016